
hr. 1. Heat Mass Transfer. Vol. 18. pp. 453-461. Pergamon Press 1975. Printed in Great Britain 

BUBBLE GROWTH RATES IN PURE AND BINARY 
SYSTEMS: COMBINED EFFECT OF RELAXATION 
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Abstract-Pohlhausen’s equation has been used to determine the initial thickness of the evaporating 
microlayer beneath a hemispherical vapour bubble on a superheated horizontal wall. Microlayer 
thickness is proportional to the square root of the distance to the nucleation site during early bubble 
growth, while a linear relationship exists during advanced growth. 

A (heat and mass) diffusion-type solution is derived for advanced bubble growth, which accounts for 
the interaction of the mutually dependent contributions due to the relaxation microlayer (around the 
bubble dome) and the evaporation microlayer. The entire bubble behaviour during adherence is determined 
by a combination of this asymptotic solution and the Rayleigh solution, which governs early growth. Also, 
expressions are derived for both the radius of the dry area and the radius of the maximum contact area 
between bubble and wall. 

At low concentrations of the more volatile component in binary systems, the dominating influence of 
mass diffusion is demonstrated by the following effects: (i) asymptotic bubble growth is slowed down 
substantially; (ii) the formation of dry areas beneath bubbles is prevented, even at subatmospheric pressures; 
(iii) the lower part of the bubble is contracted; (iv) the evaporation microlayer contribution to bubble 

growth is negligible at atmospheric and at elevated pressures. 

NOMENCLATURE 

a, = k/p, c, liquid thermal diffusivity [m’/s]; 

AI, A2,.41. bubble growth factor in nure liouid 
[m;s’/‘K]; - 

b, b*, 

B, 

W), 

d8, 

dimensionless bubble growth parameter 
during adherence; 
= (2p2 1&,/3p, T)l/’ = R/t, factor in 
Rayleigh solution [m/s]; 
liquid specific heat at constant pressure 

[J/‘kKl; 
= Cl,, = RIB, t Ii’, bubble growth constant 
in pure liquid [m/s1/2K]; 
bubble growth constant in binary mixture 
[m/s112K]; 
= R/t”‘, bubble growth factor [m/s”‘]; 
thermal boundary-layer thickness of 
evaporation microlayer beneath 
hemispherical bubble [ml; 
initial thermal boundary-layer thickness of 
evaporation microlayer [ml; 
initial thickness of relaxation microlayer 
around curved bubble surface [ml; 
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d W,W~ 

4 

:, 

9, 
G, 
K, 

Ja, 

J%, 

k, 
K 

1, 
m, 
n, 
Nu, 

k, 
Pr, 

thickness of equivalent conduction boundary 
layer at heating surface [ml; 
mass diffusivity of more volatile component 
in less volatile component [m”/s] ; 
= 2.718,. . , base of natural logarithms; 
= (kp, c)l/’ [ J/s”‘mK] ; 
gravitational acceleration [m/s21 ; 
vaporized mass fraction; 
= 2b*R(t,), maximal height of spherical 
bubble segment covered with relaxation 
microlayer [m] ; 
= (pl c/p2 1)8,,, Jakob number for 
superheated pure liquid; 
= (CI,,/C1,,)Ja, modified Jakob number for 
superheated binary mixture; 
liquid thermal conductivity [WjmK]; 
equilibrium constant of more volatile 
component in binary mixture (ratio of mass 
fractions of vapour and liquid); 
latent heat of vaporization [J/kg] ; 
exponent in R* - P; 
exponent in R,* = (C1,,/C1,,)“R*; 

= qw r/k&, local Nusselt number ; 
ambient pressure [Pa = N/m2 = kg/ms’]; 
excess pressure on vapour side of bubble 
boundary [kg/ms’]; 
= v/a, liquid Prandtl number; 
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q. 
I’. 
R, 

R 01 

R(h), 

RI, 

R29 

R2.13 

R2.2. 

R*. 

R;‘. 

a* 

G, 

R$, 

R+. 

Re. 
t, 

t1, 
t23 

t C. 

td. 

t 

t;‘. 

t:. 

T, 

T(x). 

WO): 

AT. 
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heat flux density [W/m2]; 
radial distance from bubble centre [ml; 
= R*I’?“~, equivalent spherical bubble 
radius [m] ; 
= 20T/p, I&, equilibrium bubble radius 

[ml; 
equivalent spherical bubble departure radius 

[ml: 
equivalent bubble radius according to 
modified Rayleigh solution [m] ; 
zz A3 p, equivalent bubble radius 
according to total diffusion (combined 

evaporation and relaxation microlayer) 

solution [m]; 
= A, t”‘. equivalent bubble radius 
accounting for evaporation microlayer [ml; 
= A2 r’i2, equivalent bubble radius 
accounting for relaxation microlayer [ml; 

radius of hemispherical bubble [ml; 
radius of contact area between bubble and 

heating surface [ml; 
radius of dry area beneath hemispherical 

bubble [m] ; 
hemispherical bubble radius according to 
Rayleigh solution [m] ; 
hemispherical bubble radius according to 
Cooper solution [m] ; 
= BR/C:, dimensionless bubble radius; 
= rk*/v, local Reynolds number; 
bubble growth time during adherence or 

during delay [s]; 
bubble departure time [s] ; 
waiting time between succeeding bubbles 

Csl ; 
instant of maximum contact radius [s]; 
instant of complete evaporation of 
microlayer [s] ; 
instant at which R*(t,) = r [s]; 
= (B/C,)‘t, dimensionless bubble growth 

time; 
= ( B/C2)2t2, dimensionless bubble waiting 

time; 
absolute boiling temperature [K]; 
absolute boiling temperature of liquid at 
bubble boundary in binary mixture [K]; 

absolute boiling temperature of original 

liquid in binary mixture [K]; 
= T(s) - T(x,), increase in temperature of 

liquid at bubble boundary with respect to 
original liquid [K] ; 
= .x0/{ 1 +(K - l)G}, mass fraction of more 
volatile component in liquid at bubble 
boundary in binary mixture; 
mass fraction of more volatile component in 
original binary mixture. 

Greek symbols 

6(r. t). hydrodynamic boundary-layer thickness of 
evaporation microlayer [ml: 
initial hydrodynamic boundary-layer 

thickness of evaporation microlayer [m]: 
liquid dynamic viscosity [kg/sm] : 
uniform superheating of relaxation 
microlayer around curved bubble surface 

WI: 
superheating of heating surface [K]; 
asymptotic superheating of contact surface 

between two semi-infinite bodies [K]; 
superheating of bubble vapour-liquid 

interface [K]; 

wall superheating [K]; 
superheating of bulk liquid [K] ; 
= q’pl, liquid kinematic viscosity [m2/s]; 

liquid density [kg/m3]; 
saturated vapour density [kg/m3]; 
surface tension constant [kg/s2]. 

Subscripts 

CO. corresponding convective contribution to 
total heat flux density; 

:’ 
value in binary mixture; 
initial value; 

P. value in pure liquid: 

M‘, value for heating surface. 

1. SCOPE OF THE PRESENT INVESTIGATION 

THE PRIMARY object of the present work is an experi- 
mental verification and reexamination of the physical 
background of various bubble growth theories includ- 
ing those based upon microlayer evaporation, cf. [41]. 

Both bubbles in water at a range of high Jakob 
numbers (occurring by varying the ambient pressure) 
and in aqueous binary mixtures with a more volatile 
component will be investigated experimentally; the 
mixtures being used to demonstrate the expected pre- 

dominant slowing-down effect of mass diffusion on the 
asymptotic stage of bubble growth. 

It is of substantial importance to vary the pressure 
in a certain sub-atmospheric range, as initially hydro- 
dynamic inertia may be expected to govern bubble 
growth according to: R 5 (Ap)? _ (p%o)“2t (the 
asymptotic Rayleigh solution), in contradistinction to 
the succeeding diffusion-controlled stage, during which 

R - 0 0 t”2/p. 

Bubbles are generated on an artificial nucleus with a 
radius R. = 2crT/(p21&) - l/(p&), i.e. for a given R. 
the required wall superheating for “equilibrium” bubble 
formation 19, - l/p, as according to the Clausius- 

Clapeyron equation for an ideal gas 

dpjdT = p2 l/T 5 p. 
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The present paper is concerned with theory. Forth- 
coming articles will give experimental results for water 
and aqueous binary mixtures with a more volatile 
component. Also, theoretical predictions will be com- 
pared to the new experimental data and to the results 
obtained previously by Stewart and Cole [l]. 

2. INTRODUCTION ON THE MECHANISM 
OF BUBBLE GROWTH 

The present state of knowledge on vapour bubble 
growth on a heated horizontal wall at high Jakob 
numbers-occurring in general at subatmospheric 
pressures and at high superheatings as Ja = pIcOO/ 

(Pzl ) - WP2 - &/p-involves the predominant im- 
portance of the following governing mechanisms : 

(i) The “evaporation microlayer” model 
A thin liquid microlayer is present under the 

hemispherical bubble during a certain stage of growth, 
which occurs shortly after the initial formation of the 
equilibrium radius. 

Heat is transmitted through the microlayer, the 
thickness of which is diminishing by evaporation. As a 
result, a dry surface area is formed around the 
nucleation site; the radius of this dry spot increases 
gradually with time. In general, the initial superheating 
enthalpy of the microlayer is not taken into account, 
and conductive heat transmission through the layer is 
assumed, i.e. the laminar liquid flow in the microlayer 
is neglected. 

The concept of a microlayer under a vapour bubble 
during nucleate pool boiling of water on a flat plate 
was first proposed by Snyder [2] and later used by 
Moore and Mesler [3] to explain the occurrence of 
fluctuations in the local wall surface temperature. 
Similar observations in liquid metals have been made 
by Madsen and Bonilla [4]. 

Bonnet, Macke and Morin [S] showed, that the 
instant of the rapid temperature dip coincides with the 
high initial growth rate of the bubble. The local inter- 
face temperature then increases gradually to the 
original superheating shortly before bubble departure. 
Following departure, another rapid but smaller tem- 
perature dip may occur as a result of cold fluid from 
the bulk impinging upon the surface. The surface 
temperature again recovers, increasing continuously 
during the succeeding waiting time, until the next 
bubble is generated on the same nucleus. 

More recently, presence of the microlayer has been 
shown by thermal effects using very thin temperature- 
sensitive solid state elements-Cooper and Lloyd [6-81 
-and by optical effects using the principle of total 
reflection of light [9-111 or using interferometry 
[12, 131. 

(ii) The “relaxation microlayer” model 
Simultaneously during bubble growth, evaporation 

occurs at the entire or at the lower part of the liquid- 
vapour interface at the bubble dome. According to Van 
Stralen [14,15], this additional contribution to bubble 
growth in a non-uniform temperature field is due to the 
excess enthalpy of a superheated “relaxation micro- 
layer”, which surrounds the dome as the original 
thermal boundary layer at the wall is pushed away by 
the initially rapidly growing bubble. 

Van Stralen used the transient conduction equation 
for semi-infinite bodies to determine the heat flux 
(density) at the heating surface, which is given by [16] : 

F, F 
--QBo = 

F 

qw = F,,,s F (nt)“’ 
----oo*, 
(nt)“2 

(1) 

denotes the interface superheating in case of a step 
change in temperature at the contact surface between 
liquid and wall with initially uniform temperatures 
T and T+ &,, respectively. The coefficients F = (kp, c)lir 
and F, = (k,p,~,,,)~‘~ refer to the liquid and the wall 
material. 

It follows from equation (1) that the heat flux is 
determined mainly by the poorest thermal conductor, 
i.e. equation (1) is simplified to : 

F 
- e, = 

k 
qw = (nt)l/2 __ 00 

(rrat)“* 

in case of F, >> F, whence 0: -+ B0 for a wall of high 
conductivity; this case applies to commonly used 
boiling apparatus. In case of F, << F: 

whence O,* + 0 for a wall of low conductivity. 

(iii) The combination of the evaporation and the 
relaxation microlayer 

Several theoretical models have been presented in 
literature to describe the contributions of (i) and (ii) 
to the total bubble growth separately. Until now, the 
problem of combining both mechanisms has not been 
solved satisfactorily. 

Actually, the situation is complicated by the occur- 
rence of different (hydrodynamically or diffusion- 
controlled) stages in the bubble growth. These regimes 
occur already in the more simple case of a free spherical 
bubble in an initially uniformly superheated infinite, 
incompressible and inviscid liquid, where the influence 
of buoyancy pressure, which amounts to +p, gR, can be 
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neglected. The complexity of the problem is demon- 
strated by the nonlinearity of the second order Rayleigh 
differential equation of motion, which is derived from 
the energy equation in combination with continuity. 

3. SURVEY OF THEORIES ON BUBBLE GROWTH IN 
PURE LIQUIDS BOILING AT LOW PRESSURES 

3.1. Models inuoluing asymptotic microlayer ecaporation 
3.1.1. Cooper [S] and Cooper and Lloyd [7] 

suggested that low system pressure is one of the factors 
promoting the formation of a liquid microlayer and 

leading to a hemispherical shape during initial bubble 
growth. The initial thickness of the hydrodynamic 
microlayer under a bubble is S,,(r) = i(r/R*) (nvt)‘j2 = 
&r,/R*) (mt)11’Pr’!2. obtained by solving a simpler 
form of the Navier-Stokes equation for the liquid 
velocity in the microlayer. and by assuming that 
R* _ t’.‘, 

Actually. the value of the constant )n1,‘2 = 0.89 
applies to the introduced time exponent of 0.50; a 

value of 0.80 is in better agreement with experimental 
results and with the expression 

b,(r) = +[n2/(7r2+ 1)) (nvt,)“2, 

which is also given in [7]. According to Cooper et al. 
[7.8, 171. the neglect of the thermal capacity of the 
microlayer corresponds to ignoring a vapour volume 
equal to Pr/6 times the bubble volume resulting in 
discrepancies of 100 per cent at low pressures. The 

average thermal resistance of the microlayer is taken 
to be constant at 6,/2k, which is apparently connected 
to a reduction of the thickness due to evaporation. 

The two resulting asymptotic relations for the 

extreme cases of a high and a low conductivity wall are 
based upon conduction relations for heat flow across 

the micM(hydrodynamic case) and through the 
wall (thermally controlled case), respectively. In general, 
in accordance with equation (l), the heat transmission 

is governed by the poorest heat conductor: 

R*(t) 2 &Prm1’2Ja(at)‘/L = 2~26Pr~‘!2Ja(at)1’2 
x 

(5) 

for a wall of high conductivity (hydrodynamically 
controlled case), and 

R*(t) z $& :Ja(al)‘I” = 1.13 ;Ja(at)l” (6) 

for a wall of low conductivity (thermally controlled 

case). 
Equation (5) can be derived easily from the heat flux 

balance taking hemispherical bubble shape and the 
mean thermal resistance ofthe microlayer into account: 

In principle, equation (5) can also be derived from 
equation (3) by replacing the thermal penetration 
depth, (nat,) ‘12, by the corresponding hydrodynamic 
boundary-layer thickness, (zat,)““Pr”‘, of the evapor- 

ation microlayer. 
Similarly, equation (6) follows directly from equation 

(4) as : 

4 =&,,,k*=& F w ----0, = -p, 16. 
L F (nt)“2 (8) 

Apparently, a factor of 2 has been introduced by 
Cooper [8] in the second expression of equation (8). 

Cooper et al. [7,8,17] added also a term to the r.h.s. 
of equations (5) and (6) accounting for evaporation at 
the curved surface of the bubble dome. This term has 
been taken from the asymptotic growth equation 

derived by Forster and Zuber [18] and Plesset and 
Zwick [19] for a free spherical bubble in an initially 
uniform superheated infinite liquid: 

1, 112 

R(t) z z 
i:r 

Ja(at)“2 = 1.954Ja(at)1/2. (9) 
T[ 

in which the Jakob number applies to the liquid super- 
heating. 

If the bulk liquid is not at uniform temperature 
initially, the effect of assumed profile of temperature 
variation is incorporated by an analysis based upon the 
work of Skinner and Bankoff [20,21]. For this case, it 

has been suggested to apply the Jakob numbers in 
equations (5) and (9) during advanced bubble growth to 
the bulk liquid superheating or to the remote liquid 
superheating. 

3.1.2. For F, >> F, Kotake [22] showed theoretically 
the existence of a hydrodynamic microlayer with 

&,(R*)/R* - (Re)-“2, where the bubble Reynolds 
number is defined as Re = R*k*/v. In the thermally 
controlled case (F, << F), &,(R*)/R* - p2/‘p,, in agree- 

ment with equation (8). 

Kotake extended equation (2) for the superheating 
of the wall for the case of &,(R*) >> (at)“’ to: 

Ho*@) = __- (lo) F 

3.1.3. Van Ouwerkerk [lo, 111 assumed the hemi- 
spherical self-similar bubble growth equation as 
R* - t1i2 (for which the bubble Reynolds number is 
independent of time) and carried out an elaborate 
analysis of the Navier-Stokes equation for the hydro- 
dynamically formed laminar microlayer. The initial 
microlayer thickness is given by the self-similar solution 
6,(r) = (r/R*)S,(R*) = 1.27 (r/R*)(vt)“‘. The final 
bubble growth relation is connected to the radius of 
the dry area and to evaporation on the curved surface 
for the case of an initially uniformly superheated system 
with AQo = Oo, cf. equation (9) for the uniform bulk. 
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For F, = F: 

R*(t) Z & (1 +31’2)Ja(at)“2 
16 

= 1.12@1+ 1.73)Ja(at)“2, 
(11) 

in which case microlayer evaporation accounts, in- 
dependent of pressure, for 37 per cent of bubble radius, 
i.e. only for 5 per cent of total vapour volume. 
Obviously, in the practically more common case of 
AB,, << O,,, the relative contribution of the microlayer 

will be substantially larger. The microlayer contri- 
bution in equation (11) is independent of liquid 

viscosity. 
For different thermal properties of wall and liquid, 

Van Ouwerkerk [ 10.1 l] presented numerical solutions 
for the microlayer contribution to bubble growth using 
the dimensionless quantities F,/F, c&,/l and Pr as 

parameters. An increase of the F,/F-ratio from 1 to 10 

and a simultaneous decrease of Pr from 6 to 0.6 enlarges 
the bubble growth constant corresponding to micro- 
layer evaporation by a factor of approximately 1.6 at 
coo/l = 0.10. In principle these effects are obvious, as 

they are caused by larger heat fluxes at the wall 
according to equation(l), or according to a diminishing 

initial thickness of the microlayer as Pr = v/a and 
l/2 n,-v 

A serious objection against both Coopers and Van 
Ouwerkerk’s procedure to derive the total bubble 
radius by superposition, i.e. addition of two separate 
contributions, cf. e.g. equation (11). is that the evapor- 
ation at the bubble dome increases the bubble Reynolds 
number. whence 6,, is diminishing, and the microlayer 
evaporation is thus increased; cf. Section 5.1. 

3.1.4. Van Beek and Vennekens [23] started from the 
heat flux balance: 

q,(t)= +dy (12) 

Integration over the time interval required for complete 
evaporation of the microlayer yields an expression for 
the initial thickness: 

d:,=2k 
s 

ld 

Pll f, 
O,(t)dt. (13) 

The fluctuating wall superheating under the bubble 

was measured locally using very thin nickel resistance 
thermometers during bubble growth and inserted into 
equation (13). Actually, the superheat enthalpy of the 
microlayer was also taken into account in the r.h.s. of 

equation (12), and do was taken from computer calcu- 
lations as the best-fit value to the experimental O,,,(t). 
The Van Beek and Vennekens thermal model is based 

upon the common assumptions that the liquid in the 
microlayer is at rest, hence a linear temperature profile 
for CO, << 1, and that the vapour temperature remains 

constant throughout at saturation, i.e. the model is 

asymptotic. 
The final results in n-heptane boiling on a horizontal 

quartz plate at a subatmospheric pressure of 6.7 kPa 
and at an initial O,,,(O) = O,, = 14 K are: 

d,(r) = 3.5 x 10-4r1’2, (14) 

in contrast to other theoretical models predicting: 

d,(r) - r, cf. Sections 3.1.1-3.1.3, and 

So(r) = 0.48(~t,)“~, (15) 

which means a reduction to only 38 per cent of Van 
Ouwerkerk’s value. The radius of the dry spot has been 
calculated as G = 5.6 x 10m2t. Possibly, discrepancies 

in the value of the constant in equation (15) are also 
caused by inserting k (of heptane) instead of k, (of 

quartz) into equations (12) and (13). In the latter case, 

one calculates &(r) = 1.7(vt,)“*. Actually however, the 
ratio F,,,/F has to be introduced into equations (12) and 

(13), cf. equation (1). The neglect of the superheat 
enthalpy of the microlayer diminishes the microlayer 
thickness by less than 10 per cent; this effect is 

substantially lower than Cooper’s prediction. cf. 

Section 3.1.1. 
3.1.5. Application of the Pohlhausen equation. In 

principle, Pohlhausen’s solution [24,25] will be used 

here as an approximation assuming that the liquid 
microlayer beneath a growing hemispherical vapour 
bubble is initially formed as a laminar boundary layer 
in parallel flow along a horizontal throughout uni- 
formly superheated plate. Similarly to all other 
theoretical models, the eventual occurrence of slip 

phenomena at the vapour-liquid interface of the 
microlayer is neglected. This seems to be allowed as 
the bubble displaces liquid both in front (“relaxation 

microlayer”, cf. Section 3.2.2) and along the plate 
(“evaporation microlayer”). The exact Pohlhausen 
solution (for one-dimensional flow, constant wall 
temperatureand constant free vapour velocity) is based 

on a simple Navier-Stokes equation without pressure 
gradient in combination with continuity and heat 
conduction. 

The local Nusselt number depends here on a local 
Reynolds number Re(r) = rl?*/v = (r/R*)(R*k*/v), 
where R*l?*/v denotes the bubble Reynolds number: 

q,(r)r 
Nu(r) = kH = & = 0.332Re1’2(r)Pr1’3 

= 0.3:2 (~~2~~>“zPr1/‘_ (16) 

The meaning of this equation is restricted here to the 
initial formation of the evaporation microlayer at the 
instant, t,, at which the bubble boundary crosses the 
radius under consideration: R*(t,) = r. Assuming 
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R* - t”‘. this yields an expression for the initial local 

thickness of the thermal boundary layer, which must 
be independent of time: 

The thickness of the corresponding hydrodynamic 

boundary layer amounts to: 

60(r) = 3.012 (+)“z”(~)‘;z. (18) 

Two cases are of special interest : 
(i) Asymptotic bubble growth (R* - t112), the only 

case in which the bubble Reynolds number is in- 
dependent of time. Equation (17) reduces then to: 

d,(r) = 4.260Pr-“3 $(N)~!~ = 4.260Pr-1’3(vt,)“2 

= 4.260Pr”6(ar,)“f (19) 

(ii) Initial bubble growth (R* - t), the only case in 

which k* is independent of time, cf. the original 
derivation of the Pohlhausen equation, where: 

do(r) = 3.012Pr-1’3 $ ( > 
112 

(vtp 

= 3~012Pr-“3(vt,)1~2. (20) 

A considerable advantage of equrltion (20) over other 
theoretical models is that d,,(r) - r1j2 during initial 
bubble growth in agreement with Van Beek and 
Vennekens’ experimental relation, equation (14). Also, 
this prediction is in good agreement with the data 
obtained by Cooper and Lloyd [7] on toluene boiling 
at pressures of 7 and 14 kPa on a ceramic plate, and on 

iso-propanol at 7 kPa on a glass plate. From these data, 
one calculates: d,,(r) - r o’53 and d,(r) - r”‘59, respec- 
tively. 

Asymptotic bubble growth. It follows by inserting 
equation (19) into the heat balance equation:t 

kQo 
2n(R*)‘l?* = - 

i 

R* 2x1. 

~21 
__ dr, 

o do(r) 
(21) 

tThis is allowed as the heat flux in the relatively small dry 
area, cf. equation (23). increases during the period of 
decreasing microlayer thickness, but drops to zero after 
complete evaporation. At larger distances from the nu- 
cleation site, the relative decrease in do(r) is small. This 
conclusion is confirmed by the mass balance, which yields a 
bubble vapour mass of only 0.6 per cent of the total liquid 
mass in the microlayer. 

that the radius of a hemisphere bubble is: 

R*(t) z 0,47OPr- 1fhJ~(at)Lf2. (22) 

Equation (22) is more or less similar to the asymptotic 
heat-diffusion growth equation for a free bubble in an 
initially uniformly superheated infinite liquid, but the 

growth constant has been reduced substantially, cf. 
equation (9). The similarity makes it difficult to separate 
from experimental bubble growth curves the contri- 
butions due to microlayer and at the bubble dome. 

For water boiling at a subatmospheric pressure of 
4 kPa (T = 303 K. Pr = 543), the numerical value of 

0.470Pr- ‘jh = 0.35; Cooper’s equation (5) and Van 
Ouwerkerk’s equation (II), corrected to FJF = 10. 
are giving 0.97 and 1.24, respectively, i.e. approximately 
a factor of three higher values. At atmospheric pressure 

(Pr = 1.75) the values are 0.40, 1.71 and 1.41. respec- 
tively however, cf. Section 5. I. 

Radius of dry area The radius R$ of the dry area 
around the nucleation site is characterized by complete 
local evaporation of the microlayer, whence 

qW = kQo/d = -p, ld with 
s 

hdt = -do 
I, 

Integration of the local heat flux balance over the time 
interval required for complete evaporation yields: 

kQo s fd 

a(td-tV) = - dddt = id;(r) = 9.07Pr-‘,“vt, 
1, 

according to equation (19). whence: 

td _ = 1+9.()&‘-2~3\ ! 2 9.07 $Pr-‘/3. (23) 
t, MO 0 

In general td >> t,. i.e. formation of the microlayer 
occurs rapidly in comparison with evaporation. 

In the asymptotic case, the ratio of the radius of the 

dry area to the bubble radius is given by: 

%* R*(h) _ = __ = (;j”’ = 0.332 (!!)“‘j+“, 
R* R*(t,) 

(24) 

so that R$ rr @‘, a prediction being an important 

feature for the onset of film boiling or the occurrence 

of burnout. In general, the maximum radius of the dry 
area is proportional to the bubble departure radius. In 
systems with prescribed heat flux, high local wall 

temperatures may occur at dry spots. 
The combination of equations (22) and (24) yields an 

asymptotic approximation for the radius of the dry 

area : 

Pr-‘:3~a3’z(Ut)‘/2, 
(25) 

whence G w 1’ -113 . 
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Initially, equation (20) has to be applied instead of 
equation (19). One has in this case: 

%* = tr = ().22()k80pr=,3 = ().&+.-1,’ 
R* td Vl 

= 0.220 @ JcJP~-“~, 
Pl 

(26) 

whence Q - t, which is in qualitative agreement with 
Van Beek and Vennekens’ results [23], cf. Section 3.1.4 
and the Appendix. 

Conclusions. The reader is referred to the Appendix, 
where numerical values for water show that hardly any 
dry spot will be present beneath hemispherical bubbles 
in pure liquids boiling at atmospheric pressure. 

3.2. Models for asymptotic bubble growth due to 
evaporation at the curved surface 

3.2.1. Mikic and Rohsenow [26] presented a one- 
dimensional model of heat diffusion for bubble growth 
in anon-uniform temperature field. A thermal boundary 
layer is formed by superposition of two heat fluxes, one 
due to continuous liquid heating at the wall during a 
complete bubble cycle, and the other due to the bubble 
acting as a spherical heat sink starting after a waiting 
time t2; hence: 

pzll? = 3l’=k Qo O. -A&, 
___- 
(xat)“2 I {na(t + t,)}“= 

(27) 

The equivalent bubble radius follows by integration: 

Ja(at)“’ 

time when colder liquid of the bulk replaces the original 
thermal boundary at the heating surface, the convective 
heat transfer is supplied at the wall side and simul- 
taneously removed at the opposite side. The heatir of 
the relaxation microlayer was then extended to a 
complete bubble period [14,15]. Ultimately, the action 
of the bubbles increases the corresponding convective 
heat transfer. 

The variation in the temperature around the bubble 
was demonstrated using thin thermocouples by Van 
Stralen and Sluyter [27] and can be seen in the 
interferometer cinematographic results of Beer [28] 
and Matekunas and Winter [29]. 

Van Stralen’s final expression for the equivalent 
radius during asymptotic bubble growth at a super- 
heated wall is related to equation (9): 

12 1’2 
R(t) g - 0 bJa(at)‘/= = 1.954bJa(at)“2, (29) 

n 

where the Jakob number depends on time according to: 

Ja=EB(t)=@f&exp- 
P2l PZl 

(30) 

t1 = departure time. The time-independent bubble 
growth parameter b is proportional to the relative 
height of that part of the curved surface of the bubble, 
which is covered with superheated liquid; a maximal 
value of b occurs if the surface is completely covered, 
i.e. b < 2 -1’3 = 0.794 for a hemispherical bubble, and 
b < 1 for a sphere. Equation (29) is simplified to 
equation (9) for the case of uniform liquid superheating 
by taking b = 1 and tl = 00. 

The bubble departure radius follows from equation 

x[l-~{(l+~)l’2-(~)IIz}]~ (28) r~~=P(~~2~Qriuf,)l,'=I1719bJ~(atl)1;'. (31) 

e n 

Equation (28) simplifies to equation (9), the uniform 
superheat case, for t2 = CD. 

3.2.2. The “relaxation microlayer” model of Van 
Stralen [14,15] is originally based on a different inter- 
pretation of the local fluctuations in wall temperature 
during nucleate boiling. Bubble generation is con- 
sidered as a relaxation phenomenon of the superheating 
of the convective thermal boundary layer at the heating 
surface. The thin liquid thermal layer (“relaxation 
microlayer”) is pushed away locally (due to the radial 
motion of the bubble boundary) from the heating 
surface during rapid initial growth, and is surrounding 
a part of the curved bubble boundary until bubble 
departure from the surface. 

The initial thickness of the relaxation microlayer dd in 
pure liquids is derived from the corresponding con- 
vective heat flux according to: 

or 

112 
= 0.791d,,,, = 0.791 3, (32) 

Qw,co 

k aT 
d; = 1.582--- 

qw,co ~2 R, 
(33) 

In pure liquids, the relaxation microlayer supplies 
entirely the required latent heat of vaporization for the 
bubble from its excess enthalpy above the saturation 
temperature. i.e. the layer is assumed to be thermally 
insulated on the bulk liquid side. During the waiting 

for a nucleus with radius R, . As p2 N p, it follows from 
equation (33): tii2 - p- ‘. It follows from equation (33), 
that the departure time t 1, and hence also the departure 
radius Rl arederived by extrapolation of the convective 
part of the boiling curve or from an appropriate con- 
vection correlation. 

In pure liquids, the waiting time between succeeding 
bubbles is related to the departure time: 

t2 = 3t,. (34) 
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In binary mixtures, one has [14,15] : 

whence it follows from equations (35) and (33) that: 

G_ anI -k--i 
2 

t1,, bP ’ 
(36) 

i.e. in “positive” mixtures, t,,, < f,.,. 
It may be worth noticing, that, de~nding on ex- 

perimental conditions, q,,,cO in equations (33) and (35) 
has sometimes to be replaced by a conductive (instead 
of a convective) heat flux, which follows from heat 
penetration from the superheated wall into the liquid, 
cf. also [26]. 

3.3. initial bubble growth 
The Rayleigh equation of motion for a spherical 

bubble can be derived from the energy equation in 
combination with continuity [30,18.19.31.32] : 

R#+$k2 = & $(R3k’1 

‘a OR(t) 2a . ~~~~~_~~,.~~ 
&R, 00 i%R 

(37) 

where the eq~lib~um radius R, follows from the 
Clausius-Clapeyron equation Alp(O) = (pz l/T)@,,: 

2aT R,ZL_, 
&J(O) pz IfA, 

(38) 

In general, the viscous dissipation term 4vk/R is 
neglected due to the small value of kinematic viscosity 
for most liquids. 

The asymptotic (i.e. R >> Ro) Rayleigh solution for 
the isothermal case is obtained by taking the instan- 
taneous superheating at the vapour-liquid interface 
f&(t) z 0, = constant. i.e. by taking 

A&) = ~~~(t)/~~~A~(O) = AprO) = Ap = constant: 

In contra~stinction to the mode of advanced bubble 
growth, which is determined by heat diffusion, initial 
bubble growth is seen to be determined by the hydro- 
dynamic inertia terms R# and Sk’. Diffusion- 
controlled growth can, according to Forster and Zuber 
[lS] and to Plesset and Zwick [ 191, also be described 
by equation (37), but only if a negative evaporation 
term (accounting for bubble growth as a moving heat 
sink) is added to the r.h.s. of equation (37): 

R#+$k’ = 

where R = C2 t’:’ = Cl 0ot”7 yields the asymptotic 
equation (9) for the isobaric case as only the term 
between brackets remains as t -+ X, 

Actually, during an intermediate time interval. a 
gradual transition range will be present during which 
bubble growth can be described by an appropriate 
combination of equations (39) and (9). as O,(O) = I),, 
and OR(t) -+ (RojR)IIo --+ 0 m t + x (i.e. both the vapour 
and interface temperatures approximate the saturation 
value). 

3.4. Transition betweert isothermal and isohuric 
bubbir gro~~tiz 

3.4.1. Cooper and Vijuk [ 171 apply equation (37) for 
a hemispherical bubble at a wall with constant super- 
heating flo, i.e. at a wall of high conductivity. The 
instantaneous superheating of the vapour-liquid inter- 
face is given by: 

The heat flux balance, equation (7). is used to obtain 
the driving instantaneous temperature difference across 
the microlayer: 

fi 
0 
_fi 

R* 
(tl = (E!;“&! (R*)‘k* 

2k -. 
i ‘R*rdr 

(4.2) 

j” p 

If the Cooper et ut. initial microlayer thickness 
ci,(r) = ~~~~R*)(~~,~)1~2 and the asymptotic R*(t) of 
equation (5) are inserted, equation (42) reduces to 
Ho- @+(x8) = 0,, i.e. H,,(z) = 0. This result is also 
obtained by inserting equations (19) and (21 t into 
equation (43). 

With the purpose of eliminating the unknown 
function f&),,(t). Cooper and Vijuk add equations (41) 
and (42), omitting the surface tension term in equation 
(41) being unimportant for the transition from the 
linear growth phase to the parabolic growth phase. An 
analytical solution does not exist for the transition 
period. The following approximation to a numerical 
solution has been suggested [ 171: 

R*(t) = 
I 

“’ + EPr)‘*? . 
(43) 

4Ju(at)‘~’ 

Equation f43) has the form 

R*(r) = l/[l/R~(t)f l/Rf(t)]. 

where R?(t) denotes the Rayleigh solution for linear 
growth, equation (39), and Rft.t) the Cooper rt uf. 
solution for asymptoticmicrolayer growth, equation (5). 
Obviously, equation (43) has been derived in analogy to 
two thermal resistances connected in series, with tem- 
perature drops i),,(t) and o0 - H&t). respectively, i.e. 
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with a constant total temperature drop of 0,. Equation 
(43) is independent of the bulk liquid temperature and 
the properties of the solid wall material; the latter is 
evident as the wall is supposed to be of high thermal 
conductivity. 

the curved surface in case of bubble growth on a 
superheated wall in a binary mixture to: 

3.4.2. Mikic, Rohsenow and Griffith [33] combined 
the Rayleigh solution accounting for inertia, equation 
(39), with the heat diffusion solution, equation (9), in 
case of a uniformly superheated liquid, or with equation 
(28) in case of non-uniformity. Similarly to Cooper and 
Vijuk [ 171, Mikic ef al. eliminate the unknown instan- 
taneous vapour superheating OR(t) during the transition 
stage. This elimination has been done only seemingly, 
as actually f&(t) is determined empirically by applying 
equation (39) to t’&(t) and equation (9) to &,-0,(t) in 
case of uniform superheat. The objection against this 
procedure is that one could eliminate R similarly 
whence an equation for OR(t) remains. 

Obviously, the Mikic et al. model does not in- 
corporate microlayer evaporation. The final equation is 
given in the following dimensionless form : 

dR+ 
y= 
dt+ 

where: 

R+ =AR and t+ = 
G 

(45) 

B follows by writing equation (39) as R = Bt and C2 by 
writing equation (9) as R = C2 f1/2. In case of a bubble 
at a wall, the factor 2/3 in equation (34) is replaced by 
7c/7. According to equation (44), bubble growth rates 
increase by extending the preceding waiting time during 
which a thermal “boundary layer” is formed. 

For a uniformly superheated liquid (A& =&) the 
dimensionless waiting time t: = co, whence equation 
(44) simplifies to : 

A common feature of equations (43) and (44) is, that 
both reduce to equation (39), the Rayleigh solution 
accounting for liquid inertia. for t+ 0. Also, both 
reduce to an asymptotic heat diffusion solution for 
t--t 00, i.e. to equation (5) accounting for microlayer 
evaporation, or to equation (9) accounting for evapor- 
ation on the curved surface, respectively. 

4. BUBBLE GROWTH RATES IN BINARY SYSTEMS 

4.1. The combined heat and mass &fusion controlled 
asymptotic stage 

4.1.1. Van Stralen [14,32] extended the asymptotic 
equation (29) for bubble growth due to evaporation on 

tEquation (17) of [33] has a misprint, 

k,(t) z bC1,,0(t)t1’2 

liZb (&-AT) exp-_(tltl)1’2 (at)lj2 

P2 UP1 c 

AT(x,) denotes the increase in dew point of the vapour 
depending on the mass (or mole) fraction of the more 
volatile component; G is the vaporized mass fraction. 
For mixtures with x0 << 1, the numerical values of the 
properties may be considered to be independent on 
composition. 

The ratio 

(48) 

is independent of G and of 0, (as both AT = T(x) - T(x,) 
and G are proportional to e,,) and of x (the mass 
fraction of the more volatile component at the interface) 
for relatively small values of G. 

This ratio can also be evaluated graphically (in 
dependence on composition) from an equilibrium 
diagram, a T(x, y) diagram at constant pressure 
[34-361. The minimum value of the bubble growth 
constant Cl,, in binary systems can thus easily be 
derived by substituting the obtained AT/G in equation 

(47). For the system water-Zbutanone boiling at 
atmospheric and subatmospheric pressures, the mini- 
mal growth rate occurs at x,, = 0.04; the bubble growth 
constant Cl ,,, has been reduced to 0.25 times the value 
in water boiling at the same pressure. 

It follows from equation (48), that also for binary 
mixtures with x,, << 1, R, - l/p2 - l/p. Equation (31) 
for the bubble departure radius still holds for binary 
mixtures, if B0 is replaced by B0 -AT, i.e. by 0.25 Q,, for 
the mixture considered above. 

4.1.2. Application of the Pohlhausen equation. As the 
dew point of vapour in mixtures has been increased by 
an amount AT, the effective temperature difference 
across the microlayer equals 0, -AT; 0, = wall super- 
heating; the diffusion penetration depth 2(Dt)“Z c< 
d,,,,(r) already after a very short time due to the small 
numerical value of the mass diffusivity, which is of the 
order of D = lo-‘m2/s; the order of v for water at 
room temperature is lo- 6 m2/s. 
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For binary mixtures, one can introduce a modified 
Jakob number Ju,, which is based on 0, -AT instead 
of 0, : 

where Ja = p1 cOO/(p2 1) denotes the Jakob number of 
the excess (less volatile) component. For convenience, 

however, we will use only Ja and characterize bubble 
microlayer behaviour in mixtures only by the ratio of 
the growth constants C1,,/C1,,. 

As equation (16) has to be consistent with qW = 

2p, II?*, it follows by taking R,*(t) = (C,~,/C,,,)“R*(t). 

that also qw.,,, - (Cl~m/Cl,p)“. Equation (16) is giving: 

&J,,(r) - (CI,,ICI,,)-“” 
and 

4w.m - (CI.mIC1,p)‘n’2’+1. 
whence 

(n/2)+ 1 = n or n = 2, 

1.e. hrn - (C1,,/C1,,)2. Hence a substantial reduction 
in heat flux in mixtures with a low bubble growth 

constant occurs; this is caused by a diminished driving 
temperature difference across the microlayer in com- 
bination with an increase in microlayer thickness, the 
latter being due to the decreased bubble growth rates. 

It follows from equation (16), that the initial micro- 

layer thickness : 

d,,(r) = 2 d,(r). 
( > 1.m 

(50) 

Equation (22) must be replaced by: 

(51) 4.2. Trnnsitiot~ betwrrn isothertnal utld isobaric 

One has here instead of equation (24): 

and equation (25) is replaced by: 

Equations (50)-(53) are simplified to the original 
equations if C,., = Cr,,. The substantial reduction of 
the radius of the dry area beneath a growing bubble in 
case of Ct,, < Cr.,, equation (53) has a practical con- 
sequence for the onset of film boiling or for the 
occurrence of burnout, cf. Van Stralen’s “boiling 
paradox” [14,15] and Van Ouwerkerk’s discussion on 
boiling stability [37]. 

It follows from equations (9) and (47), that both 
C - I/p and C,,, - l/p, whence this effect is in- 
dlzendent of pressure. The reader is referred to the 
Appendix for numerical data on the mixture .Y~, = 0.04 
in the binary system water2-butanone, where C,,, = 

025cr,,. 
Conclusions. If the predictions of Section 3.1.5 for 

water are also taken into account, the conclusions are 
the following: (i) dry areas will be formed in pure 
liquids only at low subatmospheric pressures; and (ii) in 
binary mixtures with a small bubble growth constant, 

dry areas will even not occur at very low pressures. 
Some of the present predictions are more or less 

similar to those obtained by Van Ouwerkerk [38], who 

extended the self-similar solution for the microlayer, 

cf. Section 3.1.3, using previous bubble growth theories 
for mixtures by Striven [39] and Van Stralen [31,32]. 

4.1.3. Cotnbincltiotl of’ eoqoratiot~ microluyer and 
relusution microlayer. According to equation (51). 
bubble growth rates due to the evaporation microlayer 

are reduced in mixtures with a factor of (C1,,,CI,,)“. 
i.e. they are even more substantially diminished than 
the growth due to evaporation on the curved bubble 
surface. as the latter is reduced with a factor of 
C 1,ff.lCl.p. cf. equations (47) and (49). A combination 
of both separate contributions is only possible. cf. 

Section 3.1.3, if the dependence of the microlayer 
evaporation on the total bubble Reynolds number, cf. 
equation (16), is taken into account, i.e. the microlayer 
evaporation depends on the evaporation rate of the 
relaxation microlayer surrounding the curved bubble 

surface. 
Conversely, the evaporation microlayer removes a 

part of the relaxation microlayer resulting in an inter- 
action of both mechanisms, cf. Section 5.1. 

bubble growth 
According to equation (39) the Rayleigh solution, 

initial bubble growth is hydrodynamically determined 
by liquid inertia, and thus independent of heat and mass 

diffusion towards the bubble boundary, which is only 
important at advanced time. 

Similarly to a pure liquid, the equilibrium bubble in 

a mixture has an initial superheating 0, at the interface. 
This implies that no effect of composition is expected 
during initial bubble growth for mixtures with .x0 c< 1. 

as liquid properties are then nearly the same. 
Experimental data on bubble growth rates in binary 

mixtures are thus not only important for the diffusion- 
controlled stage and for the formation of dry spots, but 
also for checking the validity of the Rayleigh solution, 
i.e. the effect of liquid inertia during initial bubble 
growth. 
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4.3. Bubble shape in mixtures 

Apparently, a nearly complete exhaustion of the 

more volatile component in the evaporating microlayer 

(if present) may be expected to occur soon after initial 
bubble formation. In “positive mixtures” (in which the 
morevolatile component has the lowest surface tension 
constant), this will result in a contraction of the lower 

part of the originally hemispherical bubble due to the 
“Marangoni effect”, cf. [40], i.e. the mixture x0 = 0.04 
in the binary system water-2-butanone. is predicted to 
show this behaviour. 

5. COMBINATION OF RELAXATION AND 
EVAPORATION MICROLAYERS 

5.1. Interaction of the microlayer contributions 

to bubble growth 

To date, theoretical bubble growth models have not 
accounted for the interaction of the mutually dependent 
contributions due to the relaxation microlayer (around 
the bubble dome) and the evaporation microlayer 
(beneath the bubble). An explanation of the interaction 
effect, together with the procedure for incorporating it 
into the theoretical growth model, is detailed below. 

The formation Jf the evaporation microlayer has to 

be induced by an externally caused bubble growth 
rate-according to equation (16)-i.e. by an instan- 
taneous superheating at the bubble boundary (resulting 
in the Rayleigh solution, Section 3.3) in combination 
with the effect of the relaxation microlayer. 

It follows from equation (19) by inserting Rz,l = 

A, t”‘, equation (22), that during advanced growth: 

d,(r) = 
4.260Pr1’6a”2 

r. A (54) 
1 

The initial thickness of the evaporation microlayer at a 

fixed distance from the nucleation site is thus inversely 

proportional to the bubble growth factor A,, in agree- 
ment with equation (50). The simultaneous additional 
evaporation of liquid at the curved bubble boundary 

increases Ai considerably to the value A3. As a con- 

sequence, d,(r) decreases as follows : 

d,(r) = 
4.260Pr1’6a”2 

A r, (55) 
3 

which results in additional microlayer evaporation. In 
the reverse sense, the evaporation microlayer keeps a 
quantity of superheated liquid at the wall, which is not 
removed to support the relaxation microlayer. R2 = 
A3 t’/’ accounts for the total combined diffusion- 
controlled growth. 

The interaction between both microlayer contri- 
butions in pure systems is given by the heat balance 
during the mode of advanced bubble growth, which is 

an extension of equation (21): 

k’& 
27rR;k2 = ~ 

21’3~21 

-dr+2nRjk2,, (56) 

Rze2 = AZ t”* accounts for the relaxation microlayer, 

and is given by equations (29) and (31) by replacing 
here 0(t) by Ho and b by b*. The factor 221i3 = 0.794 

in the evaporation microlayer term in equation (56) is 
introduced by considering the equivalent bubble radius. 

Equation (56) is independent of time and yields by 

inserting the corresponding expressions for R2, R2,2 

and R2.i of equation (22) using equation (55): Ai = 
A:A,+A:A*, or: 

A3 = A1+A2. (57) 

It is emphasized, that the interaction of both micro- 

layers is incorporated in this superposition-type 
equation. If the interaction should have been neglected 
by inserting equation (54) instead of equation (55) into 
equation (56), the result would have been: 

A: = A3A;+A;A2, or A: = A:+A3Az. 

It follows from (57) that both in pure and binary 
systems the diffusion solution is given by, cf. equation 
(51): 

R*(t) 2 
i 

0.3730Pr-‘!6 g + 1.9544b* 
LP i 

c 
p Ja(at)‘/*. 

LP 
(58) 

It follows that the ratio of the contributions to the 

bubble growth rate due to evaporation microlayer and 
relaxation microlayer is independent of both time and 
ofinitial wall superheating(cf. Section 5.3) and amounts 
to: 

0.1908Pr-1’6 C 
l,m: 1, 

b* CL, 
(59) 

5.2. Height of the relaxation microlayer in dependence 
on pressure 

On account of its physical meaning, one may expect, 

that b* --, 1 withincreasingpressure [14,15,31,32], and 

that b* is of the order of magnitude of 10-l (cf. the 
forthcoming paper [41 J on experimental results) for a 
saturated bulk liquid at very low subatmospheric 
pressures. 

It follows now from equation (59) that the relative 

contribution of the evaporation microlayer decreases 
with increasing pressure. For thin wires used as a 
heating surface instead of a flat plate, the evaporation 
microlayer contribution will be small at any pressure. 

The maximum height of the spherical segment (at 

the lower part of the bubble dome, consistent with 
[28,29]), which is covered with superheated liquid is 
given by [14,15]: 

H, = 2b*R(t,). (60) 

HMT Vol. 18. No. 3--H 
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As~:‘~ _ 0, s [j-l . cf. equation (33), and approximately 
h* Q p, one may expect for a constant cavity radius 
R0 acting at the minimum required UO, that 

H, _ p2p-‘Ju 5 p2p-‘pm2 z pm’ 

(as Jo - pi2 _ pe2). i.e. H, is predicted to be inversely 
proportional to the pressure. This means, that the 

distance. across which the original thermal boundary 

layer at the heating wall can be displaced by the 
moving bubble in the upward direction, will be de- 

pendent on pressure. Actually, however, the operational 

&, may exceed the required minimum value sub- 
stantially. 

5.3. Final equation for bubble growth during adherence 
Until now. the gradually diminishing excess enthalpy 

of the evaporation microlayer has been neglected. 
Actually, this effect can be incorporated into the final 
bubble growth equation by introducing a time- 
dependent microlayer (uniform) superheating B(t) 
similarly to equation (30). Both microlayers show then 
the same temperature dependence, in good agreement 
with observed temperature fluctuations at the wall 
beneath growing bubbles [4-8,231, which occur even 
in case of a heating material of high thermal con- 
ductivity. The introduction of B(t) = 0,exp-(t/t1)1’2 
instead of a constant 0, has no influence on the 
derivation of equation (57) from the heat balance (56). 

The proposed procedure is not in contradiction with 
equations (21), (22) and (13), cf. [14,15]. During the 
succeeding waiting time after bubble departure, the 
superheating of the wall increases gradually to 0, 
according to equation (l), the validity of which has 

previously been extended to the entire bubble period, 
cf. [ 14,151 and Section 3.1.1. 

Due to its physical background, the Cooper and 
Vijuk procedure [17], cf. Section 3.4.1, will be used 

here to combine the total asymptotic diffusion solution 
with a modified Rayleigh solution, cf. equation (39), 
which dominates during the early growth period. 

The proposed final bubble growth equation, which is 
valid (both in pure liquids and in binary mixtures) 

during the entire adherence time is assumed to be of 
following form : 

1 ~lww~ 

R(f) = (1/k@)+ l/R,(t)) = R,(t)+R,(t)’ 
(61) 

The modified Rayleigh solution is given by: 

R,(t) = 0.8165 
pzlBO exp-(t/t1P2 *i2t 

PlT 
/ . (62) 

and the combined relaxation and evaporation micro- 
layers (heat and mass) diffusion solution, cf. equations 

(47), (51) and (58) is given by: 

R,(t) = 1.9544 + 
1.P 

x {b* exp-(t/tI)“2} + F 
[ I 

Ja(at)“* 
0 

$0.3730 2 2pr-l/6 

( > 1.P 

x {exp-(t/tl)}1’2Ja(at)1/2. (63) 

The Jakob number Ja = p1 ctIo/p2 1 has to be applied 

here to the pure less volatile component. In pure 
liquids C,.,/C,,, = 1. 

Obviously, R(t) + R,(t) -+ equation (39) as t + 0, i.e. 
bubble growth during the early stage is governed by 

liquid inertia, thus by hydrodynamics. R(t) -+ R,(tl) as 
t + tI, the departure time, at which R2(tl) = 0 for the 
case of Aeo = 0. The bubble departure radius follows 

from equation (61): 

R(h) = 
RlWW,) 

Mh)+fb(tJ ’ 
(64) 

where 

t1. (65) 

and (in case A0, = 0): 

R,(t,) = 0.7190 g b*Ja(nt#” 
1.P 

2 

Pr- 1’6 Ja(atI)“*, (66) 

whence b* is determined by the following expression : 

b* = 1.3908 5 R2(t1) ---O~1908+6. (67) 
Cl,, Ja(ut#‘2 1.P 

This expression is an extension of equation (31), cf. 

also Section 5.1. 
According to equation (33), the bubble departure 

time increases with decreasing pressure. In general, 

R,@,) N ~“~p-~ = p-3/2, 

R2(tl) - (p-‘~-~+p”~p-‘p-‘) z p -2 , 

whence R(t,) - pM2 at pressures, at which heat and 
mass diffusion governs bubble growth (the more 
common case) and R(t,) - P-312 at very low sub- 

atmospheric pressures, at which liquid inertia domi- 
nates. Apparently, in any case, the bubble departure 
radius decreases substantially at increasing pressure. A 
gradual decrease of R(tI) at decreasing $ is also 
obvious. Both the absolute and the relative instant (in 
relation to tl), at which RI = R1, increase at decreasing 
pressure, i.e. at very low subatmospheric pressures, 
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liquid inertia governs bubble growth during nearly the 
entire adherence time. Contrarily, at elevated pressures, 
where the diffusion solution dominates during the 
entire adherence time, equation (61) is simplified to 
equation (29), and equation (64) to (31). 

The derived bubble growth and departure radius 
equations (61)-(66) can be generalized easily to the case 
of a wall of low thermal conductivity by replacing 
B0 by ~9: = F,&/(F,+F) according to equation (2). 
I.e. the superheating enthalpy of the wall material is 
taken into account. 

5.4. The maximum radius of the contact area between 
bubble and wall 

The ratio of the contact area between bubble and 
heating wall to the bubble radius (c/R*) equals one 
during the early hemispherical growth period. During 
the succeeding mode of advanced growth, the lower 
part of the bubble boundary contracts (due to surface 
tension gradient forces in combination with buoyancy), 
whence e/R decreases gradually and R$ shows a 
maximum value at t, as e(t,) = 0. For pure liquids, 
the assumption is made, that the maximum contact 
radius R*(t,) occurs at the instant t,, which is deter- 
mined by the following condition, cf. equations (19) 
and (32) : 

= 4.260Pr-‘16(at,)‘iz = d,,, = 2.471(at1)“*, (68) 

whence t, is proportional to the departure time: 

t = 0.336Pr-“3t 1. (69) 
The physical basis’of equation (68) is, that the evapor- 
ation microlayer keeps only superheated liquid beneath 
the bubble. Afterwards, the contact area is diminishing 
due to the combined action of buoyancy and the 
occurrence of gradients in the surface tension along the 
bubble boundary, resulting in a contraction of the 
outer area. 

At very low pressures (below 3 kPa), where the 
Rayleigh solution governs bubble growth during nearly 
the entire departure time, one has to use equation (20) 
for the initial thickness of the evaporation microlayer 
instead of equation (19). In this case, equation (69) is 
replaced by : 

t C = 0.673Pr-“3tI. (70) 

5.5. Temperature fluctuations at the surface and inside 

the heating material 
It follows from equation (63), that the temperature 

difference across the evaporation microlayer decreases 
during bubble growth. Consequently, a substantial 
temperature dip occurs simultaneously at the heating 
surface. During the waiting time between succeeding 
bubbles, the temperature difference across the micro- 
layer increases again graduallv. 

These temperature fluctuations show only a slight 
damping ofthe amplitude in case of a highly conducting 
(metal) wall. Consequently, one may expect the occur- 
rence of considerable temperature fluctuations inside 
the heating material even at relatively large distances 
from the upper surface. The fluctuations give rise to 
unwanted periodic thermal expansions resulting in 
material fatigue. Of course, this effect will even be of 
greater importance at the dry spots formed beneath 
bubbles at which much higher local temperatures occur 
in case of uniform heat production inside the heating 
material. This may also promote local corrosion of the 
heating surface. 

5.6. Turbulent jaw pattern inside and in the 
neighbourhood of rapidly growing bubbles 

Especially in water boiling at low pressures, the 
equivalent bubble Reynolds number RR/v reaches high 
values of the order of magnitude of 104-105, which 
results in the occurrence of turbulent eddies in the 
adjacent liquid at the bubble dome. Also, in the vapour 
inside the bubble space, turbulent eddies may be 
expected to occur, although the kinematic viscosity of 
vapour is nearly one order or magnitude larger in 
comparison to the kinematic viscosity of liquid. Violent 
turbulent flow pattern have actually been observed by 
the present authors on high-speed cinematographic 
recordings, cf. the forthcoming paper on experimental 
bubble growth data in water boiling at subatmospheric 
pressures [41]. Similar observations have been made by 
Beer [42]. 
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APPENDIX 

The Evaporation Microlayer Contribution to Bubble Growth 

I. Numerical values for water 
(i) At a low pressure q/ 4kPu. For 0, = 35 K (Ja = 1970) 

and f = 6.25 x IO-‘s (i.e. t 2 ft,). one has, equation (25): 
Rb = 4.14 x lo-’ m: under these conditions, equation (26) 
predicts a ratio R$/R* = 4.61 x IO-‘. equation (22) yields 
R* = 6.83 x lO~‘m. 

(ii) At atmospheric pressure. For Ho = 20 K (Ja = 60) and 
t = 4.9 x 10m3s (i.e. t z ft,), G = 4:25 x 10-5m. R$/R* = 
4.43 x 1O-2 and R* = 7.31 x lo-” m. ADDarentlv. the theor- 
etical asymptotic microlayer value of R* at 4kPa exceeds 
the total experimental value (4.5 x 10m2 m); cf. Section 5. 

At atmospheric pressure the experimental R* = I.24 x 
IO-” m exceeds the asymptotic microlayer contribution with 
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70 per cent. Due to the small value of R$, which is only 
thirty times the dimension of nucleation sites. hardly any 
dry spot will be present in water boiling at atmospheric 
pressure. 

It may be worth noticing, that the value of the constant, 
0.156 in equation (25) may be increased maximally by a 
factor of 5 due to the interaction with the relaxation micro- 
layer, cf. Section 5, i.e. dry areas of the order of lo-’ m are 
predicted to occur in nucleate boiling of water at 4 kPa. 

2. Numerical values for an aqueous binary mixture 
Some numerical values are following for the mixture 

x0 = 0.04 in the binary system water-2-butanone, where 
C 1 m = 0.25G,,, CI., is the corresponding value for water 
boiling at the same pressure. 

(i) At a pressure of 4 kPa, cf. Section 4.1.2, the predictions 
are giving for 0, = 35 K and t = 6.25 x lo-‘s: R.2 = 
4.27 x 10Y3 m, R&,/R; = 7.70 x 10e3 and R& = 3,% x 
10e5 m, a very small value, which equals the dimensions of 
nucleation sites (3 x lo- 5 m), i.e. hardly any dry area will be 
formed in this mixture. 

(ii) At atmospheric pressure at 8, = 20K and t = 
4.9 x 10e3s, the predictions are: R: = 4.55 x lO_‘m. 
R&,,/R~ = 7.40 x 10e3 and R&, = 3.32 x lo-‘m, a value 
even an order of magnitude smaller than the dimensions of 
nucleation sites (1.5 x 10m6 m). 

3. Numerical values for heptane 
(i) Microlayer thickness. With the purpose to compare 

theoretical predictions with Van Beek and Vennekens’ ex- 
perimental equation (14): d,(r) = 3.5 x 10-4r”2 for the 

initial thickness of the evaporation microlayer, the following 
distinction is made: 

(a) Asymptotic bubble growth. cf. equation (19). The 
bubble radius in n-heptane boiling at a pressure of 6.7 kPa 
at 0, = 14K is estimated both from Van Ouwerkerk’s 
experimental data [lo, 111 at 16.6-24.6kPa and from 
equation (9) to: R* = 0.10t”2. Equation (19) yields: do(r) = 
1.10 x 1Oe3r at t = 10m3s, and do(r) = I.95 x lO_-‘r at 
t = 10-2s. 

(b) Initial bubble growth, cf. equation (20); equation (39) 
gives: R* = 1,87t, whence equation (20) yields: d,(r) = 
10.1 x 10-4r112. which is in satisfactory agreement with 
equation (14), if one considers the neglect of microlayer 
interaction. 

(ii) Radius oj‘ dry area. During initial bubble growth: 
R$/R* = 0.22 (!&/$)Pr2’“, cf. Section 3.1.5, equation (26). 
For n-heptane at the above-mentioned boiling conditions, 
R$ = 2.0 x 10e2t. This prediction is also in satisfactory 
agreement with Van Beek and Vennekens’ experimental 
results [23], cf. Section 3.1.4. 

Van Ouwerkerk’s data [lo, 111 on n-heptane boiling at 
16.6kPa on a perspex plate show a ratio: G/R* = 
8.2 x lo-‘, in quantitative agreement with equation (24). 
which yields a ratio of 7.2 x lo-‘. 

It may be worth noticing, that in general the interaction 
between the relaxation microlayer and the evaporation 
microlayer has not been taken into account in the Appendix. 
This is due to a present lack on appropriate experimental 
information in literature. However, this neglect has no 
influence on the order of magnitude of substantial quantities, 
neither on the validity of the statements. In this respect, the 
reader is referred to the forthcoming experimental results 
and a comparison of those with theoretical predictions [41]. 


